1. Prove that $[0,1] \equiv[0,1)$.

Hint: Find a Hilbert hotel in $[0,1]$.
2. For sets X, Y, let Y^{X} denote the set of all functions from X to Y; in particular, 2^{X} is the set of all $0-1$ valued functions on X. For $A \subseteq X$, let $\mathbb{1}_{A}: X \rightarrow 2$ denote the characteristic/indicator function of A, that is: for $x \in X$,

$$
\mathbb{1}_{A}(x):= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { otherwise } .\end{cases}
$$

Prove that the function $\pi: \mathscr{P}(X) \rightarrow 2^{X}$ that takes every $A \subseteq X$ to its characteristic function $\mathbb{1}_{A}$ is a bijection.
3. Let A, B be sets.
(a) Prove that if A and B are countable, then $A \times B$ is countable.
(b) Prove that if A is countable and every $a \in A$ is also countable, then $\cup A$ is countable. Did you use Axiom of Choice?
Hint: Use part (a).
(c) Denote $A^{0}:=\{\emptyset\}$ and prove that $\left\{A^{n}: n \in \mathbb{N}\right\}$ is a set without using Replacement.
(d) Prove that if A is countable, then the set $A^{<\omega}:=\bigcup_{n \in \mathbb{N}} A^{n}$ is countable, where $\bigcup_{n \in \mathbb{N}} A^{n}:=\bigcup\left\{A^{n}: n \in \mathbb{N}\right\}$.
4. (a) Prove that addition is well-defined on \mathbb{Q}, that is: although the result $\frac{n_{0} m_{1}+n_{1} m_{0}}{m_{0} m_{1}}$ of the addition $\frac{n_{0}}{m_{0}}+\frac{n_{1}}{m_{1}}$ is defined using the particular representatives $\left(n_{0}, m_{0}\right)$ and (n_{1}, m_{1}) of the equivalence classes $\frac{n_{0}}{m_{0}}$ and $\frac{n_{1}}{m_{1}}$, respectively, the result itself does not depend on the representatives, i.e., $\frac{n_{0} m_{1}+n_{1} m_{0}}{m_{0} m_{1}}=\frac{n_{0}^{\prime} m_{1}^{\prime}+n_{1}^{\prime} m_{0}^{\prime}}{m_{0}^{\prime} m_{1}^{\prime}}$ whenever $\frac{n_{0}}{m_{0}}=\frac{n_{0}^{\prime}}{m_{0}^{\prime}}$ and $\frac{n_{1}}{m_{1}}=\frac{n_{1}^{\prime}}{m_{1}^{\prime}}$.
(b) Prove that multiplication is well-defined on \mathbb{Q}.
(c) Without using Axiom of Choice, define a transversal for the equivalence relation in the definition of \mathbb{Q}. This just means finding a subset $S \subseteq \mathbb{Z} \times \mathbb{N}^{+}$that intersects every \sim-class in exactly one point.
5. For sets A, B, we write $A \rightarrow B$ to mean that there is a surjection $\pi: A \rightarrow B$.
(a) Prove without using Axiom of Choice that for any set X and an ordinal $\alpha, X \sqsubseteq \alpha$ if and only if $\alpha \rightarrow X$.
(b) Use the Cantor-Schröder-Bernstein theorem to deduce that

$$
(\alpha \rightarrow X \text { and } \alpha \sqsubseteq X) \Longleftrightarrow \alpha \equiv X .
$$

(c) Conclude that $\mathbb{N} \equiv \mathbb{Q}$.
6. Cantor's diagonalization. Let R be a binary relation on X. For $x \in X$, let $R_{x}:=$ $\{y \in X:(x, y) \in R\}$ and call these sets sections of R. Prove that the antidiagonal $\nabla(R):=$ $\{x \in X:(x, x) \notin R\}$ of R is not equal to any of the sections of R.
7. Prove that if $A \subseteq \mathbb{N}$, then there is $\alpha \leqslant \omega$ such that $\alpha \equiv A$.

Hint: Intuitively, you should try to enumerate the elements of A. This is formally done by recursively defining a function $\pi: \omega \rightarrow A$ (transfinite, or in this case, finite, recursion) such that for some $\alpha \leqslant \omega,\left.\pi\right|_{\alpha}: \alpha \rightarrow A$ is an order-preserving bijection.

